您好,欢迎访问这里是您的网站名称官网!
10年专注环保设备研发制造 环保设备系统设计\制作\安装一条龙服务
全国咨询热线:131-958-2773
当前位置: 首页 > 新闻中心 > 行业资讯

化工废气的处理方法范例6篇

作者:小编 时间:2024-03-27 19:42:16 点击:

  PET生产是国内最主要的聚酯产品,由于其优秀的物理和化学性能而广泛地应用于很多领域,经过几十年的发展PET生产工艺和技术水平已经趋于成熟,各个生产流程都得到优化和改造。但是对于PET生产以及整个聚酯产品生产过程中出现的工业废水和废气处理却仅仅处在起步阶段,及时有效地处理聚酯生产过程中出现的废水和废气问题,能够减小化工生产对环境造成的污染,为保护好环境出一份力。

  聚酯废水排放到水流中会对水生态平衡造成危害,发生水生物大面积死亡的现象,严重地还会对生物链产生不可挽回的损害。但是聚酯废水经过处理将污染物分离出来以后,不但不会对生态环境造成危害,还会给水生物提供大量养分,起到变废为宝的作用,不但能改善聚酯化工厂周边的环境,还能减小工厂的生产成本。本章主要介绍了国内和国外普遍采用的废水处理工艺和方法。

  我国聚酯生产能力已经步入了国际上的先列,企业生产工艺和设施的逐步完善使得生产能力也不断增加,到目前为止,国内化工厂普遍采用的废水处理方式有“复合生物曝气”、“生物浮选”和活性炭吸附等方式,从原理上可以归纳整理为三类,也就是生物处理、吸附和氧化处理。研究数据表明,不同的处理方式有着不同的优缺点,生物浮选处理废水对水流的质量和流量十分敏感,对于产量较大的化工厂一般不采用这种处理方式,设备的投资和运行费用也随着生产量的提高而提高,所以大部分生产厂家都会根据自己的产能和废水具体工艺采用合适的处理方法。

  国外对于聚酯废水处理已经形成了一个完善的处理工艺,通过连续式反应器去除聚酯废水中的有害物,这种反应器反应效果好,再生率高,恢复期短,能够有效地处理聚酯废水;从很多方面来看国外的废水处理技术已经领先国内很多年。国外很多生产厂家一般都采用化学氧化方法对聚酯工业废水进行预处理,或者对处理不太完善的处理后废水进行再处理。以保证工业废水在排入河流等其他水流环境中不会对生态环境造成巨大污染。像日本株式会社采用的是向工业废水中加入碱性化合物,将废水中的有害物质转化为其他不会对生物造成损害的其他化合物,从而减少废水中的有害物质含量,达到排放要求。

  聚酯废水中尤其是生产聚对苯二甲酸乙二醇酯的酯化水中仍然含有较大量的乙醛和乙二醇水溶液,针对这一情况一般采用精馏塔精馏的方式对工业废水中的乙二醇进行精馏操作,已达到回收其中一部分乙二醇的目的,也能够有效降低排放的废水中的有害物的含量。对于工业酯化废水中存在的乙醛,很多化工厂都在精馏塔工艺水准上进一步优化设计,可以得到质量较高的医用乙醛。采用回收再利用技术不仅仅能够降低废水中有害物质的含量,保护环境,还能从另外一个方面增加企业的经济效益。

  聚酯废气中含有大量的乙醛和乙二醇,排放到空气中会对人体和生态环境造成危害,但是由于生产工艺和设备的限制,聚酯生产过程中出现的废气大都是经过简单的喷淋之后直接排放到空气之中,因此需要根据产能、废气成分和设备具体状况设计合理的废气处理措施才能达到处理废气的目的。

  一般常采用的是喷淋处理,但是喷淋处理的效果不是很明显,往往喷淋完的废气中仍然含有大量的乙二醇和乙醛,依然不能够达到排放的标准。所以优先考虑的是燃烧废气的处理方式,但是燃烧尾气的过程中容易发生爆炸现象,这是阻碍尾气处理的一大因素,科学研究表明乙二醇的爆炸极限体积分数在1.8%-15.9%之间,因此在废气处理过程中,可以将工艺废气进行鼓风稀释使其乙二醇的含量小于爆炸极限体积分数,再灌入热炉中进行焚烧。

  在大多数生产厂家都是采用喷淋和焚烧相结合的技术,将喷淋后的混合蒸汽一起焚烧,能够减少废气后处理成本,以较小的代价使废气处理能够达到排放标准。有的企业采用的是催化剂燃烧发处理PET生产过程中规出现的废气,经过催化燃烧处理后的废气能够达到国家要求的废气排放标准。使得废气中危险化合物含量处在一个合理的标准范围内。

  对于聚酯生产过程中出现的废水和废气,影响因素众多,一般来说在生产过程中设备出现故障会导致生产反应发生异常出现废水和废气,使得废水和废气中有毒成分含量增加。我们应当分析废水废气产生原因和废水废气最终处理结果的影响因素,然后根据分析结果制定相应的处理手段,最终使得废水废气中有害成分含量达到国家规定标准,甚至为企业创造另一方面的效益。

  在生产过程中,反应器开车的初始阶段的化合反应刚刚进行的时候,反应的副反应加剧,溶液在反应釜中停留时间较长,反应速率低等原因都直接导致了化学反应不充分和不完全,而反应的副反应的主要产物是乙醛和乙二醇,这两个产物正好是废水和废气中最主要的有害物成分,设备停车和故障也同样会导致这一现象的发生,因此在对开车停车和设备故障这几个阶段产生的废水和废气要单独处理。

  设备是制约废水废气处理水平发展的最大阻碍,由于废水废气处理过程对于设备符合要求巨大导致成本提升,设备经常进行超负荷运作也导致处理效率降低。设备操作参数的控制精度也不能满足废水废气的净化需求,这些因素都导致聚酯生产废水废气的处理效果。

  对于废水废气产生原因分析,从根本上进行优化,解决聚酯生产过程中产生废水和废气的因素,从上产工艺入手,合理优化反应工艺,减少在生产过程中废水废气中乙醛和乙二醇的含量,能够减轻废水废气后期处理的压力。加大废水废气后期吸收处理手段研究力度,提高处理手段。因此优化聚酯生产工艺过程、开发废水废气处理手段能够从根本上提高处理效率。

  聚酯产品在人们日常生活中的应用越来越广泛,随着聚酯生产产能的增加,其带来的污染问题也需要进一步探索和调整优化,从根本上解决问题,在可持续发展建设提供保障。

  [1]余建林.陈金义.聚酯生产废水废气的工艺处理[J].聚酯工业,2008,02:39-43.

  近年来,我国在大力发展工业的同时,给自然生态环境造成了极大的影响。工业生产中大量废水废气的产生对人们的生存环境带来了严重的污染,尤其是石油化工业生产过程中生成的废气对大气和环境的污染最为严重。为了消除或减少石化工生产中的废气产生,有必要加大对废气处理技术的研究力度。

  在石油化工生产过程中都会产生大量的废气,关于这些废气中污染物的来源,我们在进行一些介绍与分析。

  对于石油炼油来说,其工艺一般来说比较繁杂,因此在这一过程中会产生大量的废气。这其中包含了6 大类。第一是氧化沥青尾气,它主要的成分是苯并花,其来源主要的地方是在沥青装置中;其次就是在催化裂化过程中产生许多一氧化碳、二氧化碳及二氧化硫的催化再生废气;第三就是在催化再生废气中还包含的燃烧烟气,它的主要来源是提供能源的锅炉、焚烧炉及加热炉之中;第四就是臭气,臭气中含有酚、硫及醇类物质,它是在脱硫、污水处理的过程中所产生的;第五就是含硫废气,它主要也是在回收硫的过程中所产生的,其中这类废气中不仅包含了硫类化合物,还有氨及硫化氢的出现;最后一种就是总烃,这是在这个生产过程中出现的最多的一种污染物,并且其来源也是非常广的,在提炼的各个过程中都会有它的产生。

  在化工生产的过程中,也有很多污染废气的产生,在这个过程中我们主要只提到两种,第一种是燃烧烟气石油,这种废气的污染物主要还是二氧化硫、一氧化碳、二氧化碳等这些常见的污染物,此外还会有粉尘的出现,给环境造成污染,这种燃烧烟气石油的主要来源是在锅炉、加热炉、裂解炉、焚烧炉和火炬之中。另外一种产生的废气就是工艺废气,它是在整个化工生产过程中出现的最为常见及最多的废气,其中所包含的污染物也是很多的,其中主要还是一系列的烃类物质,包含了卤化物、醇类及其它的像氰化物、一氧化碳、氮氧化物这些无机物。其中这些工业废气的主要来源还是甲苯装置、对苯二甲酸装置、环氧氯丙烷装置。

  石油化工企业在废气处理过程中的方法很多,从其作用原理上讲则分三类:物理处理方法、化学处理方法和生物处理方法。

  (1)吸附法主要用于对一些刺激性有机化合物的吸附,使用的载体一般是活性炭,因其表面积大,吸附能力强,再生能力好,可用于刺激性废气的脱臭处理。过滤法则主要用在粒径较小的油烟雾的处理上。

  (2)过滤法的处理介质常为玻璃纤维,因为处理的油烟雾直径小,遇冷时会快速凝结,通过玻璃纤维能有效滤除有害的物质。

  化学处理法主要是催化法,催化法的种类也很多,如催化氧化、接触催化、光催化等。在催化中常用的催化剂也分贵金属和非贵金属、非金属三类。在物理吸附中提到的活性炭也可作为催化剂用于废气的处理中。除催化法之外,放电分解也是一种较为常见的废气处理方法,其主要作用机制是利用高电压放电产生非热平衡等离子的过程中产生的高能电子破坏碳原子与碳原子、碳原子与氢原子形成的化学键,再经化学置换反应,将有害化合物转化为无害化合物排出。

  生物处理方法是利用微生物分解处理废气的方法,微生物处理废气是基于废水处理方法发展起来的,对易溶于水的有害气体可以考虑将其溶解在水中利用细菌进行降解,对于难溶于水的有害气体,则需在真空中进行细菌讲解。

  对VOCs废气进行处理的技术有很多,但能够进行深度净化处理的技术不多,该技术就是其中之一。该技术比以往其他技术有多处创新,不仅仅体现在工艺流程、配套催化剂及关键设备等方面,更重要的是开创性性的开发出针对不同VOCs废气的四种典型石化工业废气深度净化处理工艺,如:硫及总烃浓度均化―催化氧化、环氧丙烷/苯乙烯(PO/SM)废气双系列催化氧化等。在该技术的支持下,相关工作人员还发明了四种典型VOCs废气催化氧化剂及具有脱硫和浓度均化双功能的试剂。

  是一种成熟的处理有机废气的方法,它的技术前身为微生物处理废水技术。以微生物为载体,将大气中低浓度的有机废气作为附着在多孔、潮湿介质上的活性微生物的营养供给,通过一系列变化,转化为简单的无机物或细胞组成物质等。首先,有机污染物首先溶于水中。其次,溶于水中的有机物,在水中受到压力差的作用进一步扩散,在扩散过程中被水中的微生物捕获并吸收。最后,有机污染物在微生物体内经历自身代谢后作为能源和营养物质被分解, 在生物化学反应过程中生成了无害的化合物。

  放电等离子处理工业尾气是一项比较成熟的技术,它的主要放电形式是高电压,在放电过程中得到一些等离子体,也就是说,在这一过程中,产生了大量的高能电子或O、OH、N 基等活性粒子,导致C ―H、C ―C 等化学键一一被破坏,在这一反映过程中,H、CL、F 等尾气分子中的一些元素发生置换反应,最终生成CO2 和H2 O。即工业废气在经过放电这一环节后生成了大量的无害物质。

  尽管末端处理至少在目前还是减少废气排放的主要手段,但也出现了处理重心前移的一些趋势。硫转移催化剂的应用,使FCC再生烟气不再经过脱硫即可符合二氧化硫排放标准的要求;使用低硫、低烯烃和低芳烃清洁燃料,从而在很大程度上解除了汽车尾气处理的烦恼;炼油一化工一体化联合工艺,给原油的充分利用提供了可能,因此也大大减少了VOC的排放。凡此种种,无不说明废气的处理不应仅限于末端。处理重心前移在某种程度上也是推行清洁生产和资源能源利用率得以提高的一种反映。

  一个单元过程原则上只能解决一种污染物或几种性质相近的污染物的处理问题。然而废气组成通常是比较复杂的,石油化工废气尤其如此。它面临的是废气多种组分的去除。这就决定了在选择废气处理工艺时,必须考虑多种单元过程的组合,由此构成一个能够满足预定目标的组合流程。。

  环境污染的根源在于对资源和能源的无节制攫取和非合理利用。因而减少环境污染的唯一出路也就是合理开发并尽可能提高资源和能源的综合利用率。在石油化工废气处理领域,则集中表现为注重处理与回收相结合。熄灭炼厂火炬、将废气中的硫化物直接转化为工业硫酸、FCC再生烟气废热锅炉、丙烯腈尾气催化燃烧处理废热回收、利用炼厂尾气生产化工产品等等。这些都是废气处理与资源和能源回收并重的实例。

  通常,不同的生产单元因其不同的操作技术及废气种类会采用不同的废气处理方法。我国的石油化工企业在处理废气时常通过对处理工艺单元的组合实在有机废气的优化处理,同时在众多处理方法中选择最合理有效,性价比最高的方法。在废弃处理的过程中遵循充分利用可回收成分和避免产生新污染两个原则,做到在做好废气污染处理的同时提高经济和环境效益,达到双赢的目的。

  随着我国化工制造企业水平的不断提升,化工企业生产过程中所排放的废弃物尤其多,加之当前对化工企业生产经营的排放控制机制不够健全,而且针对环保企业的监管不力,使得大量化工企业所排放的工业有机废气没有经过处理排入到空气当中,严重污染了大气质量,对全球气候及局部环境造成了严重影响。进而直接危及当地人们的健康,同时也给当地经济的可持续发展造成了严重影响。因此,增加对有机废气的处理力度,加大对有机废气的处理技术应用有极为现实的意义。本文针对当前有机废气的处理技术进行了较为详细和系统的分析,为提高有机废气的处理质量提供参考。

  通过将吸收剂与气体相接触,使得气体当中的有害分子逐步转移到吸收剂中而将有机废气分离,属于一种典型的物理化学作用过程。之后通过解析的方式将液体当中的有害分子予以去除,并将之回收起来,使得吸收剂得到重复回收、利用。从作用原理来看,可以将之分为物理方法和化学方法两种。其中,物理方法就是利用物质相溶的原理,通常是将水作为吸收剂,并将有机废气当中有害的气体予以去除,但对于部分不溶于水的有机废气物质,例如“三苯”等,则必须采用化学方法去除,通过溶剂与物质发生化学反应的方式予以去除。

  液体吸收法是采用气、液态相互转换的方式进行的,而活性碳吸附方法则是将气态当中的分子吸收并固定在固体表面,从而使得气态的有机分子转化成为固态的形式。因为活性碳的类型及来源是不同的,因此其自身的特性,例如表面积亲水性、极性等也存在一定的差异,所以对应的吸附机制不同,需要针对不同的有机废气种类采取不同的方式。

  从原理上来讲,有机废气的生物处理方式就是使用微生物的生理过程将废气当中的有害物质转化成为简单的无机物,例如CO2 、H2O和其他的物质等的一种有机废气处理方式。

  通常,一个相对完整的有机废气生物处理过程包括这样三个基本的步骤:其一,废气当中的有机污染物必须先与水相接触,同时能够迅速溶解于水中;其二,溶解在液膜当中的有机物在液态的成分浓度差作用下将逐步扩散到生物膜当中,从而被附着其上的微生物迅速吸收;其三,被微生物所吸收的有机废弃物将在其自身的生理代谢过程中被讲解,从而最终逐步转化成为不污染环境的化合物质。

  该方法就是利用有机物质在不同温度下其具有不同的饱和蒸汽压这一特点,继而使用降压系统温度或者提高系统压力的方式使得蒸汽状态中的污染有机物质通过冷凝的方式从中提取出来。通过使用冷凝处理之后,将可以使得废气中得到较高程度的净化,但是其实际的操作难度较大,通常不能在室温下的冷却水中完成,而需要通过降低冷却水温度的方式才能达到,这在一定程度上增加了处理的费用和难度,因此该方法主要用于处理废弃浓度高、温度相对较低的场合。

  燃烧方法就是利用温度明显高于有机物燃点的温度将有机物进行强烈的燃烧、氧化,通常可以采用直接燃烧、触媒燃烧两种方法。一般,直接燃烧方法主要采用温度在650℃~850℃中的高温容器中进行。其中,沸石浓缩转轮焚烧法是当前广泛被集成电路企业所采用的一种有机废气处理技术。当产生的有机废气进入到沸石转轮中之后,通过使用沸石吸附废气当中大量的有机成分,从而形成相对干净的空气,然后将产生的干净空气排入到大气中,其他的部分则继续进入处理循环当中,这样将有效降低处理过程中后续的处理成本。使用沸石浓缩转轮将处于低浓度、大风量状况下的废气浓缩成为高浓度、小风量的废气之后采用直接燃烧的方式将之转化成为环境友好的CO2与水,从而达到去除有机废气的目的。在整个处理过程中,通过沸石转轮的动态吸附与解析过程,因为不存在吸附剂饱和的问题,只需要通过适当调整转轮的转速、再生温度、风量等就能够达到较好的浓缩效果。该种方法对有机废气的浓缩倍数能够达到5-20倍,去除率能够达到90%左右。但是,采用这种直接燃烧方法所需要的燃料费用较大。

  而通过采用触媒燃烧的方式能够将整个过程所需要的反映温度降低,一般高出有机物燃点100℃就能够迅速完成氧化反映。整个反应过程中所采用的触媒类物质主要包括金属氧化物(例如Cr2O3,CuO)和部分稀有金属(如Pd,Ag,Au)等,通过将之覆盖与反应体的表面,发生对应的反应:

  在整个过程中,通过使用触媒燃烧的方式,能够将废气温度降低250-400℃左右,有效降低了燃烧热量的消耗。整个触媒焚化工艺流程相对较为简单,图1中对整个工艺过程中需要用到的系统组件进行了描述,主要包括预热器、触媒床、热交换器、鼓风机和温度、通风量控制单元等。

  其中,触媒床是整个工艺生产的主要设备,其反应温度保持在250-400℃之间,这对触媒类型的选择尤为重要。通常,还需要考虑到触媒的具体反映性质、造成的压力损失、应用寿命和维修安装方便程度等。但是,在整个反应过程中要避免下述几点情况的发生:

  首先,要避免出现高温失活的问题,通常,触媒出口的温度要在650℃一下,具体温度需要根据触媒的种类进行确认,否则将造成触媒烧结的问题,降低触媒的活性。

  其次,避开触媒中毒问题的,若废气当中包含了触媒的毒化物质,例如有机矽化物、金属和磷化物等,这部分物质将会使得触媒燃烧转化成为无机物,从而粘附在触媒的表层,使得触媒失去活性,反应效率下降。

  再次,避免出现表面遮蔽的问题,若废气当中包含有诸如焦油等物质,冷凝作用将会使得其变成粘性的液态,将会覆盖与触媒的表面,从而影响触媒的使用效果。

  微波空气净化方法就是从传统的填料吸附—解析技术逐步发展起来的,是一种将传统的解吸方式转化成为微波解吸的方法。通过使用微波能有效减少了对能量的消耗,同时还缩短了整个解吸的周期,使得吸附剂在通过二十多次的重复解吸之后依然具有较好的吸附能力。当前,该方法在水处理当中有相对成功的应用,而且针对有机废气的应用,国外业有小规模的成功应用,但是国内还处于初级阶段。

  为了提高有机废气的处理力度,必须加强对传统有机废气的处理力度,通过提高有机废气处理效率的方式来节约处理成本。通过加大新技术的研发力度,并通过在工业应用中的拓展。针对成分相对复杂的有机废气,可以联合多种工艺方式进行综合处理,将其中的有机废气处理掉,保证生态环境的稳定。

  味精行业作为我国发酵工业的主要行业之一,其产量随着社会的发展在逐步增加,随之而来即是严重的污染问题。味精废水中有机物与悬浮物菌丝体(COD、BOD、SS)、氨氮、硫酸盐含量高,酸度大(pH值低),具有 “五高一低”的特点,是一种难处理的高浓度有机废水,其大量排放造成了环境的严重污染,因此如何对此难处理的废水进行处理受到了极大的重视。

  对于味精废水处理技术, 研究者进行了不少探索, 也取得了许多成果, 但迄今仍存在工程投资大、效果不理想、处理费用高等问题。目前对味精废水治理包括物化处理方法、生物处理方法和综合处理。

  物化处理方法包括絮凝沉淀、膜分离、离心分离等方法。该方法局限于味精废水的前期处理或预处理,但随着水处理技术的发展和工程实践经验的增加,该方法也可以完成资源化的目标。生物处理方法包括发酵废母液生产饲料酵母、厌氧处理和好氧处理。综合处理技术的发展是由于味精废水具有的“五高一低”特点,单独应用物化或生物方法都不能达到令人满意的程度,因此在味精废水处理工艺中出现的多种处理方法结合并进行优化,形成味精废水的综合处理。

  本文在在总结国内外经验、引进吸收先进技术成果的基础上,以现有味精废液资源化——清洁生产水平为基础,提出了味精废水处理与资源化治理,

  采用味精废水水处理与资源化技术,可取得多方面效应。首先,可以极大地削减废水的污染负荷,使后续生物处理易于进行。其次,可回收利用“废弃资源”——有机营养物,变害为宝,减少污染;第三,以资源化制取的Bt生物农药可以有相应收益,部分或全部推偿废水处理费用,使废水治理方案变得实际。

  该技术主要分为资源化处理部分(“NT-Bt”)及生化处理两个部分。首先应用“多相分离器”对高浓度味精废液进行分离—浓缩,然后将浓缩液应用“Bt农药生产技术”进行资源化处理。最后,再用生物法对分离后的废水(分离透过液)连同其它中低浓度味精废水进行有效处理。

  废水采用多相分离流程处理浓缩可达6-10倍,COD去除率为60-65%。经多相分离可以大大减少产生的污泥量,进而减轻后续处理的负担。

  苏云金芽孢杆菌(Bt)制剂是应用广泛、生态效益很好的一种生物农药,它能充分利用了废水中残留的有机物,具有投资少,见效快,变废为宝的特点,基本上无物理、化学方法方法所产生的二次污染问题,具有很强的经济效益和社会效益。

  第二阶段:当驯化到BT菌可以在未稀释的废水中正常生长时即进入第二阶段,此阶段废水(不进行稀释)中添加的营养物的浓度按一定比例逐渐减少,直至为零。

  第三阶段:逐步减少预处理时氢氧化钙的添加量、预热时间、预热温度和增加废水浓缩倍数。

  经驯化的苏云金杆菌对硫酸铵进行利用能力加强,表1显示了驯化后的菌株对恶劣环境的适应力大大加强,可以有效的利用无机氮源和较多的硫酸根,对营养的利用率大大增加,有利于废水的处理。

  通过实验研究分析得出结论证明“NT-Bt”工艺的是切实可行的工艺路线,与其它常规的处理方法相对比,具有投资省、运行费用低、环境效益好等优点。

  采用多相分离后的味精废水透过液进行闷曝培养,在25~30℃条件下可得到性能良好且微生动物种类比较齐全的污泥,用培养好的污泥对经稀释的味精废水进行SBR法好氧处理。其实验装置如图3所示。SBR反应器有效容积为5L,由有机玻璃板粘贴制成,为直径长12厘米,高60厘米的圆柱体,侧壁装有排水、排泥阀。内部采用砂芯曝气头。外部连接空气压缩机。SBR反应器进水量、曝气量都可以通过阀门和流量计计量。

  将味精生产企业排放的一部分高浓度废水多相分离后稀释,控制其COD为1000mg/l左右,温度为25℃~30℃,以固定的曝气量8L(空气)/L(混合液).h进行闷曝培养。

  采用瞬间向反应器中投加稀释味精废水的进水方式,以固定的曝气量8L(空气)/L(混合液).h进行连续曝气,保持反应器内的混合物在静止30分钟以后污泥的沉降比为30%。考察了不同曝气时间对SBR过程处理味精废水效果的影响,结果见图4。

  图4可见,曝气时间在0-6小时区间内时,COD的下降较快。曝气时间超过6小时后,COD下降的速度变缓。因此,用SBR法处理味精废水,曝气时间选择6小时比较适宜,且此时出水水质已基本满足要求。

  进而考察SBR过程对废水COD、BOD5、NH3-N的处理效果。固定曝气时间6小时, BOD5的去除率大于COD的去除率,结果见表2。

  同样采用瞬间进水方式向反应器中投加稀释的味精废水,固定曝气时间6小时,以固定曝气量8L(空气)/L(混合液).h进行曝气。保持反应器内的混合物在静止30分钟以后污泥的沉降比为30%。考察了温度对SBR过程处理味精废水效果的影响,结果见表3。

  表中数据表明在18~25℃之间,废水的COD值均能降到500mg/L左右,在此温度区间内,温度SBR好氧活性污泥法处理味精废水的效果影响不大。但若温度为15℃,COD的去除率下降不够明显,而且出水COD值已经不能满足要求,因此,用SBR活性污泥处理味精废水,温度宜选择 18℃以上。

  (1)采用味精废水处理与资源化治理工艺可有效实现废液的资源化,削减了污染负荷,使后续废水生物处理变得较简单易行。

  (2)将味精废水经过多相分离处理后的浓缩液用来培养驯化生产苏云金杆菌(Bt)制剂,驯化后的菌种可以很好的在膜浓缩后的味精废水中生长,得到性能良好且微生动物种类比较齐全的污泥,进行SBR法好氧处理。

  (3)当温度在18℃以上,曝气量为8L(空气)/L(混合液).h时,曝气6h,SBR法可将废水COD从2000mg/L降到500 mg/L左右,达到当地的味精废水排放标准,可知SBR方法适合处理味精废水。

  [2] 刘健楠,汪苹,尹明锐,等. 味精废水处理系统中高效细菌的分离鉴定及其脱氮性能[ J]. 环境科学研究,2010,23(3):355-360

  [3] 董黎明,张艳萍,汪苹. SBR法处理味精废水脱氮机理研究[ J].环境科学与技术,2010,33(11):152-155

  在我国实施改革开放的过程后,我国经济的发展步入到了快速发展的快车道上来,因此在我国国民经济快速发展形势的带动下,我国的各项有关国民经济发展的事业都得到了十足的发展与建设,这其中就包括我国制药业的快速发展。但是,随着制药业快速发展的同时,也引发了一系列相关的细节问题。如制药企业废水的处理问题等。今天本文就分析了制药生产废水的水质特征,介绍了近年来国内外制药废水处理过程中常采用的各种物化法、化学法、生化法及其他组合处理方法,评述了各种处理方法的特点及其存在的问题,讨论了处理工艺的选择和制药废水的资源回收利用问题。

  制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展。制药废水已逐渐成为重要的污染源之一。如何处理该类废水是当今环境保护的一个难题,也成为广大人民在生活过程中普遍关注的话题之一。因此,本文从以下几个方面来探讨了药企废水处理技术。

  1.1.制药废水的处理方法制药废水的处理方法可归纳为以下几种:物化处理、化学处理、生化处理以及多种方法的组合处理等,各种处理方法具有各自的优势及不足。首先,我们来说一下物流处理方法,其包括以下几种方法,第一,就是混凝法,该技术是目前国内外普遍采用的一种水质处理方法。它被广泛用于制药废水预处理及后处理过程中。如硫酸铝和聚合硫酸铁等用于中药废水等。高效混凝处理的关键在于恰当地选择和投加性能优良的混凝剂。近年来混凝剂的发展方向是由低分子向聚合高分子发展。由成分功能单一型向复合型发展131。刘明华等141以其研制的一种高效复合型絮凝剂F一1处理急支糖浆生产废水,在pH为6.5,絮凝剂用量为300 mg/L时,废液的COD、SS和色度的去除率分别达到69.7%、96.4%和87.5%,其性能明显优于粉末活性炭、聚丙烯酰胺等单一絮凝剂。第二,就是气浮法。气浮法通常包括充气气浮、溶气气浮、化学气浮和电解气浮等多种形式。新昌制药厂采用CAF涡凹气浮装置对制药废水进行预处理。在适当药剂配合下,COD的平均去除率在25%左右。第三,就是电解法,该法处理废水具有高效、易操作等优点而得到人们的重视,同时电解法又有很好的脱色效果。李颖嗍采用电解法预处理核黄素上清液.COD、SS和色度的去除率分别达到71%、83%和67%。

  1.2.其次,我们来谈谈制药废水的化学处理方法。而化学处理又分为以下几个具体方法,如铁炭法,试剂处理方法,氧化法等,今天我们主要谈谈化学处理中的氧化法,其又称高级氧化技术,它汇集了现代光、电、声、磁、材料等各相近学科的最新研究成果.主要包括电化学氧化法、湿式氧化法、超临界水氧化法、光催化氧化法和超声降解法等。其中紫外光催化氧化技术具有新颖、高效、对废水无选择性等优点,尤其适合于不饱合烃的降解,且反应条件也比较温和,无二次污染,具有很好的应用前景。与紫外线、热、压力等处理方法相比,超声波对有机物的处理更直接,对设备的要求更低,作为一种新型的处理方法,正受到越来越多的关注。用超声波一好氧生物接触法处理制药废水。在超声波处理60 S.功率200W的情况下,废水的COD总去除率达96%。除了以上几种主要的处理方法外,还有生化处理法,厌氧生物处理等技术,我们在这里就不一一说明了。

  2.1.制药废水的处理工艺及选择制药废水的水质特点使得多数制药废水单独采用生化法处理根本无法达标,所以在生化处理前必须进行必要的预处理。一般应设调节池,调节水质水量和pH,且根据实际情况采用某种物化或化学法作为预处理工序,以降低水中的ss、盐度及部分COD,减少废水中的生物抑制性物质,并提高废水的可降解性,以利于废水的后续生化处理。预处理后的废水,可根据其水质特征选取某种厌氧和好氧工艺进行处理,若出水要求较高,好氧处理工艺后还需继续进行后处理。具体工艺的选择应综合考虑废水的性质、工艺的处理效果、基建投资及运行维护等因素,做到技术可行,经济合理。总的工艺路线为预处理一厌氧一好氧一(后处理)组合工艺。如陈明辉等 采用水解吸附一接触氧化一过滤组合工艺处理含人工胰岛素等的综合制药废水。气浮一水解一接触氧化工艺处理化学制药废水、复合微氧水解一复合好氧一砂滤工艺处理抗生素废水、气浮一UBF—CASS工艺处理高浓度中药提取废水等都取得了较好的处理效果。

  推进制药业清洁生产,提高原料的利用率以及中间产物和副产品的综合回收率,通过改革工艺使污染在生产过程中得到减少或消除。由于某些制药生产工艺的特殊性.其废水中含有大量可回收利用的物质,对这类制药废水的治理,应首先加强物料回收和综合利用。如浙江义乌华义制药有限公司针对其医药中间体废水中含量高达5%~10%的铵盐.采用固定刮板薄膜蒸发、浓缩、结晶、回收质量分数为30%左右,作肥料或回用,具有明显经济效益。但一般来说,制药废水成分复杂,不易回收,且回收流程复杂,成本较高。因此,先进高效的制药废水综合治理技术是彻底解决污水问题的关键。

  关于处理制药废水的研究已有不少报道,但由于制药行业原料及工艺的多样性,排放的废水水质千差万别,所以制药废水并没有成熟统一的治理方法,具体选择哪种工艺路线取决于废水的性质。根据该废水的特点.一般应通过预处理以提高废水的可生化性并初步去除污染物,再结合生化处理。目前,开发经济、有效的复合水处理单元是亟待解决的问题。同时,应加强清洁生产的研究,并在处理前期考虑废水是否有回收利用的价值和适当的途径。以达到经济效益和环境效益的统一。

  2006年全国二氧化硫排放量和化学需氧量分别比2005年有所增加,2005年全国二氧化硫排放总量高达2549万吨,比2002年增加了27%。数字表明,我国治理废气面临着严峻的形势。国家环保总局局长表示,造成主要污染物不降反升的主要原因是,经济增长方式仍然粗放、产业结构调整进展缓慢、GDP增速高于预期目标、环保投入不足、环境执法监管不力。

  我国政府已经意识到资源环境约束和经济快速增长的矛盾,“十一五”规划中把与经济社会可持续发展、群众生产生活关系密切的环保、能源等作为约束性指标,要求政府确保实现,而将经济增长作为预期性指标。近几年,二氧化硫、二氧化氮和二氧化碳的排放正在与经济的增长脱钩,在环境保护方面取得了令人瞩目的成绩。

  然而,通常的污染处理方法均具有处理不彻底,成本高,存在二次污染或普适性差的问题。有关专家认为,科学技术是有机废气产业赖以生存和发展的基础,因此建议加强有机废气治理科技的研究与产品的开发,政策上要鼓励科研院所、高校积极参与有机废气研发,有选择地扶持有实力的环保公司从事有机废气治理专项技术成果转化、应用研究,既要重视开发投资、效益好的实用技术,也要发展高新技术,更要加大力度改造传统工艺和设备,提高有机废气产业的技术水平,有目的地组织国内外的技术交流与合作,提高我国研究和开发能力及有机废气治理产品的附加值。

  项目简介:该技术根据机立窑烟气特性从废气处理量、电耗、耐酸防腐、清水循环使用、污水成球、安全实用等方面开展了治理方案的研究工作。采用国内先进成熟的KT型复合式设备方案对生产工艺参数及操作方式进行调整,优化工艺,对烟尘污染进行二级治理,较好地解决了机立窑烟气污染问题,电耗低,对窑煅烧的适应性好,运行费用低,运转稳定,排放浓度≤150mg/Nm3,有较好的经济与环境效益。

  意义:该系统设施投入运行后,经昆明市环境监测中心监测,其排放浓度为135.7mg/Nm3,除尘效率98.1%,低于国家允许排放标准。经过正常运行证实,适应云南高原气候条件,其技术水平在水泥机立窑烟气污染治理上达到国内先进。

  项目简介:该技术采用环境生物复育技术、生物过滤技术研制的高效生物膜来净化和降解废气中的污染物质。当含有气、液、固三相混合的多种化合物、挥发性有机物(Volatile Organic Compounds即VOCs)、油烟等有毒有害有臭废气以专管收集后导入本设备,通过培养生长在生物过滤柱内的特殊微生物形成的生物膜,此生物膜一方面以废气中的污染物为养料,进行生长繁殖,另一方面对废气中有毒恶臭物质及挥发性有机物(VOCs)进行分解、脱臭处理,将其降解成为二氧化碳(CO2)和水(H2O)等无毒无味的物质后再排出,达到净化废气的目的。

  意义:该技术产品是根据各种有毒恶臭废气的生化特点,采用微生物选育、高效生物膜研制技术,自行研制的能有效处理含多成份有毒恶臭废气的高效生物过滤设备。采用本技术不需添加任何化学物质,能在3~8秒内快速降解废气,无任何二次污染,运行成本低,使用寿命长,生物膜无需更换、可自动更新。

  该技术产品可用于降解废气中的挥发性有机污染物和恶臭物质,包括:烷烃类、醛类、醇类、酮类、羧酸类、酯类、醚类、苯类、烯烃类、多环芳烃类、卤素类化学以及H2S、NH3和VOCs等。例如:在工业生产加工过程中,化工、造纸、食品、造漆等行业所排放出的有毒恶臭废气,垃圾场、中转站废气,医药、农药的制药废气,畜禽粪便渣糟干燥废气等。该设备在实际应用中具有明显性价比优势,且解决了其他除臭设备运行费用高、维护管理麻烦等问题,对减少废气环境污染具有良好的效果。

  项目简介:该项目是一种潜艇废气的处理工艺及装置,针对现有技术中存在的需要多种化学物质,处理成本高,并不能同时处理多种有害气体的缺陷,提供这样一种工艺方法及装置:将各舱室中的废气抽出,通过废气输送管并预冷后送到废气净化池里,废气净化池放置于冷阱中,冷阱与液氦或液氮压缩制冷机连成一体而使冷阱温度达到-186℃,到达废气净化池的废气中大部分有害气体如CO2、NH3、SO2由于深冷作用而凝固落在池里,净化后的气体包括氧气、氮气等则沿净化气回流管升温后回到舱室中。该项目的工艺方法操作简单,不需要使用任何酸、碱、盐甚至有机物,无二次污染,废气处理成本低,效果好。

  项目简介:喷漆废气处理工艺,喷漆废气先经水洗喷漆台除去树脂磁漆颗粒物,经水洗喷漆台处理后的废气用抽风机抽入填料吸收塔在常温、常压下吸收,填料吸收塔所用的吸收剂为柴油或5~10号油;吸收剂吸收浓度达到10-30%时重新更换吸收剂;当吸收剂吸收有机废气浓度达到10~30%的吸收剂送入蒸馏釜分馏,收集160℃以下馏分,仍作稀释剂使用,经过蒸馏处理的吸收到剂冷却后回输至储液槽备用。上述工艺所用处理设备,废气收集罩至填料吸收塔的入气口管道上设有抽风机;填料吸收塔的下部设管道与吸收液储槽相通,填料吸收塔的上部设管道与吸收液储槽相通,该管道上装有循环泵。

  项目简介:过滤煤烟新工艺是一项利用活性炭、氧气和氨净化煤烟的新技术。活性炭是一些直径大约5毫米、微孔数量很多的小球(每克活性炭表面积可达1500平方米)。首先将煤烟冷却到110~130摄氏度,然后进入第一个反应装置,装置中的水和氧将煤烟中的二氧化硫转化成硫酸被活性炭吸附。经第一次过滤的煤烟进入第二个反应装置,里面的氨将其中的氧化氮过滤掉,经过两次过滤的煤烟已被净化,可排放到大气中。微波处理烟道废气技术,是利用微波火力发电站烟道废气中的有害气体二氧化硫和氮氧化物滤除的一项技术。此技术先将废气送入充满碳粒的反应罐,二氧化硫的废气送入分解反应罐,罐内有碳粒和微波发生器,微波辐射可使氮氧化物分解为氮和氧,通过烟囱排入大气;与此同时,将吸附了二氧化硫的碳粒与煤混合,也送入分解反应罐,微波加热混合物,把二氧化硫分解为硫和氧,氧与碳作用生成一氧化碳和二氧化碳;再把这一混气体送入一分酸槽中,用凉水喷淋,硫被冲掉并可制成硫磺粉,其他气体送回锅炉房充当燃气。

  意义:这一技术可以滤除废气中98%的二氧化硫和氮氧化物。与传统的洗涤法相比,设备简便,成本低廉,滤除率高,没有二次污染,有较高的商用推广价值。

  项目简介:硝酸尾气中的NOx,主要为NO和NO2,NO与H2O不发生反应,但在常温下,NO很容易被空气中的氧氧化成NO2,NO2与H2O反应生成HNO3和NO。延伸吸收法就是利用NO2与H2O反应生成硝酸的原理,在原吸收塔的后面增加一个吸收塔,增大尾气的氧化空间,延长NO2的吸收时间,从而达到消除尾气中NOx的目的。非选择性催化还原法消除硝酸尾气中NOx,最初采用H2做还原剂,含有NOx的硝酸尾气经加热升温,与H2混合,通过装有钯触媒的催化燃烧器进行催化反应,使NOx最终转化成无害的N2。目前采用以CH4替代部分H2,即CH4和H2同时做还原剂进行催化还原反应。

  硝酸尾气采用延伸吸收法+非选择性催化还原反应方法治理,使最终外排尾气中NOx的浓度小于400ppm,排放量低于22kg/h,NOx的去除率大于82%,再经76m高的排气筒高空排放,对区域环境日均浓度贡献值为0.0003~0.0038mg/m3,仅占环境质量标准的0.3~3.8%。

  意义:延伸吸收法是利用本公司硝酸生产装置压力高的特点,通过增加一个吸收塔,延长了NOx气体的吸收时间,增大吸收容积,从而达到降低尾气中NOx浓度的目的。最后增加催化还原装置,对硝酸尾气中NOx进一步做无害化处理,尽量减少了排放指数。整个处理过程,工艺流程简单成熟,投资少,同时提高了氨的转化率,增加了硝酸的产量。

  项目简介:该项目以低浓度甲苯废气(VOCs的代表物)为对象,对生物膜填料塔净化处理高流量负荷下低浓度VOCs废气技术的可行性进行了实验研究,考察了入口气体甲苯浓度、温度和营养物添加量等因素对高流量负荷下低浓度甲苯废气去除效果的影响。

  在高气体流量负荷下,可以采用甲苯废气净化专用菌种对生物膜填料塔进行接种挂膜。该技术适用于高气体流量负荷下的低浓度甲苯废气的净化处理。在高流量负荷条件下,气体流量和入口气体甲苯浓度对生物膜填料塔的甲苯净化效率有较大的影响。当气体流量为0.8m3/h,入口气体甲苯浓度为105mg/m3,停留时间为18.3s时,甲苯的净化效率可达到61.9%,与国外同类应用研究结果基本相当。使出口气体甲苯浓度低于国家对现有企业的排放标准(≤60mg/m3)。同时,适宜地控制操作温度(20~25℃)和氮、磷营养物添加配比(C:N:P=200:5:1),将有助于提高生物膜填料塔的净化性能。

  项目简介:在塑料、橡胶加工、油漆生产、汽车喷漆和涂料生产等诸多工业领域中,工业品的生产和加工过程产生了大量含有挥发性有机化合物(Volatile Organic Compounds,VOC)的废气(VOC废气)。对VOC废气的治理有多种处理技术可供使用。但对于VOC浓度低、风量大的废气,传统工艺存在投资运行费用高、处理效率低和处理后存在二次污染等问题。近年来,逐渐发展的废气生物处理技术作为一种新型的空气污染控制技术,得到日益广泛的应用。